教育

首頁 資訊 教育 學習 歷史 健康 女人 生活 題庫 母嬰
子欄目:

文康網 > 教育 >

音樂中的1234567是如何來的?

音樂中的1234567是如何來的?

時間:2021年09月21日 21:38:50 來源:www.myclassified-ads.com 閱讀:

  今天對音樂中的1234567是如何來的?聊了聊,下面,是本站的小編整理關于音樂中的1234567是如何來的?的詳情解說:

相信很多人對音樂的認識是始于1234567,也認為所有音樂都是關于1234567,基礎教育的很多老師也出于各種因素沒能向大眾提供更為科學合理的音樂基本原理的教學內容。

  那么關于1234567,我們應該知道些什么呢?

 ?。ㄏ葋韨€視頻)

所以,所謂1234567 是一種記譜法表示的音階,現在被稱為自然大調音階,也叫中古調式(教會調式)的伊奧尼亞調式。

  和簡譜對應的就是五線譜。

  而題目這里所說的1234567如何來講的是這些音是如何形成的,將在后面第二點提到。

補充說明的五線譜,音名和唱名的知識如下:

1:五線譜

→紐姆記譜法,形成于9世紀,可以認為是二線譜。

→四線譜,形成于11世紀。

→五線譜,最終形成于17世紀,沿用至今。

 ?。ㄎ寰€譜的學習另開一文)

2:唱名法:Do、Re、Mi、Fa、Sol、La、Si(或Ti)

→法國作曲家阿雷佐的圭多于11世紀發明四線譜,并確立了六聲音階唱名法:ut-re-mi-fa-sol-la,采用八度理論,放棄古希臘的四音列的理論。

→1615年德國發明“波比唱名法”出現七個音。

→19世紀,英國格洛佛建立首調唱名法。

3:音名CDEFGAB

為何1234567對應的不是ABCDEFG,而是CDEFGAB呢?

由于在歐洲處于統治地位的教會音樂是以大調音階為主,也就是Do、Re、Mi、Fa、Sol、La、Si. 而音名體系是另外一個體系,最早是來源于愛爾蘭的小調,其音階關系是La、Si,Do、Re、Mi、Fa、Sol 。

  英國人給這個音階關系對應了一組自己的音名,為ABCDEFG. 當英國人去表述以德奧意為中心的歐洲中世紀的大調音階時,就根據自己的這組音名套上去,得到的就是CDEFGAB,其實C一直表示Do. 由于英美的政治經濟地位越來越強勢,相應的這套音名體系就開始在世界范圍內不斷的被確立和使用。

換句話說,ABCDEFG原本屬于英國愛爾蘭的的La、Si,Do、Re、Mi、Fa、Sol,對應到一直以大調為主的歐洲(德奧意)古典樂的Do、Re、Mi、Fa、Sol、La、Si就變成了CDEFGAB. 至于1234567,是源自于18世紀的法國,是比唱名,音名更晚的一種記譜法,在理解另外兩個概念的時候記得不要混淆概念和本末倒置。

為了幫助大家更好理解,下面引用來自互聯網的音符唱名趣味由來,若你都看懂上面的一些基礎知識的話,那么下面這個引文(綠色文字)看起來更有趣:

相信所有人,在幼兒園時代就已經學會了“Do Re Mi”,可是,你知道為什么要把它們唱成Do Re Mi嗎?

在很久很久以前,在遙遠的意大利,有一間天主教的修道院,那里的牧師每天都會帶領著修士們念經、唱詩。

  其中有一個叫做圭多(Guido Monaco)的小修士,發現身邊其他的修士們唱誦《格里高利圣歌》的時候,幾乎所有人都在不同的調上,聽起來十分的不整齊!

  這讓喜愛音樂的他非??鄲?!

那個時候,并沒有現在這樣統一的唱法,大家都是各唱各的,所以才造成了這種現象。

  于是圭多開始認真地學習音樂,希望能發明一種大家都能學得會的音符來改變現狀。

  然而,他的想法遭到了其他修士的反對,大家都說:“圭多,你何必這么認真呢?

  現在每天念經、唱詩,已經很忙了,如果再讓我們學音樂,大家會累壞的!

  而且我們的本職工作就是傳道,至于音樂的事兒,就讓那些音樂家去做好了!

  ”

不過,認真的圭多并沒有接受大家的意見,仍然沉迷于音樂理論的研究。

  這讓其他修士大為惱火!

  最后那些修士們想了各種辦法,終于把他從修道院趕了出去

可憐的圭多輾轉來到一個叫阿雷佐的小鎮。

  雖然這里沒有一家修道院,但是那里聚集了一大群教堂歌手!

  他們的主教特德爾德 (Tedald)是一個十分開明的人,不僅對圭多的到來熱烈歡迎,更是十分支持他對音樂的研究!

在研究中,他發現《圣約翰贊美詩》(Hymnus in Ioannem)這首樂曲,第一句歌詞的音符音高恰巧是C大調的第一個音,而后邊的每一句歌詞的第一個音又恰巧比前一句高一個音!

  于是,他就把歌詞的每一句的第一個詞單獨挑了出來!

拉丁語版《圣約翰贊美詩》歌詞如下:

Ut queant laxis (為了可以用放松的聲音),

Resonare fipis (去回應),

Mira gestorum (您所創造的奇跡)。

Famuli tuorum (您的追隨者請求:

Solve polluti (請洗滌我們罪惡的)、

Labii reatum (不潔的嘴唇)!

Sancte Iohannes (噢!

  圣約翰)!

圭多由此發明了“六聲音階”——Ut(烏),Re(唻),Mi(咪),Fa(發),So(嗖),La(啦)!

“六聲音階”就這樣傳唱了上千年,至今大家都還在沿用它的唱法……

圭多發明“六聲音階”的故事到此結束,但是唱名的發展卻沒有就此止步!

后來,因為弦樂器的發展,中世紀的六弦琴被淘汰了,人們加入了第七個唱名“Si”(取自剛才那首歌最后一句:Sancte Iohannes 的兩個首字母)。

到了17世紀,意大利的音樂理論家吉奧瓦尼(Giovanni Battista Doni)覺得發出Ut這個音時,嘴巴是閉起來的,一點都不響亮!

  于是,他用自己名字Doni的前兩個字母:Do,替換掉了原來的Ut。

  這下唱起來就更順口了!

經過了這樣的歷史發展,“哆唻咪發嗖啦西”就這么定下來啦!

再后來,進入20世紀后,英語成為了世界通用語言,取代了拉丁語,于是有個叫Cicele Gertken的修女,特意整理了英文版《圣約翰贊美詩》,歌詞如下:

Do let our voices

resonate most purely,

miracles telling,

far greater than many;

so let our tongues be

lavish in your praises,

Saint John the Baptist.

19世紀的時候,英國的音樂研究家,為了不讓唱名中有重復的發音(So和Si都是S開頭),于是,他把“西”(Si)改成了“提”(Ti)……當然,這種唱法只在一部分國家流行了起來:比如美國、英國。

  但是世界上大部分國家,比如中國,還是繼續使用“西”(Si)的唱法!

二:律學,1234567音階關系是怎么來的?

  為何音樂是超地域,超文化的?

1概念:不管你懂不懂,先說一個概念,哈哈:為了使音樂規范化,人們有意選擇的一組高低不同的音符所組成的體系,以及這些音符之間的相互關系,稱之為律學。

2樂音體系:音樂有很多個音樂體系,而七個音級的音樂體系只是其中之一,千萬別認為Do、Re、Mi、Fa、Sol、La、Si 就是世界上唯一的音樂體系,大錯特錯。

  如今我們廣泛使用的十二平均律的七聲音階是由中古調式其中一個發展過來。

  有比七個音少的音律體系,如中國五聲音階,也有比七個音多的音律體系,如密律,一個八度內有幾十個音的。

3:關于頻率:

從生物學上理解,對振動頻率的生理感知是音樂的基礎,那么我們人類和頻率之間有哪些關系呢?

首先,先來看一下頻段圖:

其次,人耳能分辨的最小頻率差是2HZ。

  舉例而言就是,人能聽出100HZ和102HZ的聲音是不同的,但聽不出100HZ和101HZ 的聲音有什么不同。

  另外,人耳在高音區的分辨能力迅速下降

4:科學與藝術。

  數學規律揭示了音樂具有審美價值的原因,但音樂并不是遵循數學而存在的,音樂的調音遵守聽覺經驗,例如調音師在調音的時候并不是按平均律調,而是按耳朵調的。

  音樂律學的重要依據之一是悅耳,但悅耳不應該是音樂的全部,而“悅耳”是具有時代性的,曾經的悅耳在不同的時代會被認為空洞乏味等。

  有人如此總結:音樂的領域里,審美價值是第一性的,數學規律是第二性的。

  音樂之美,發端于聽覺的愉悅,淋漓于人類的情感。

  它可以暗合于整齊的數字,但必須生發于澎湃的心潮。

  樂記曰:“凡音之起,由人心生也。

  ”

5:由于律學涉及的范圍比較龐雜,下文引用文庫總結,有興趣的朋友可以好好了解。

各音階與頻率的關系--十二平均律

“律”,即“音律”(intonation),指為了使音樂規范化,人們有意選擇的一組高低不同的音符所組成的體系,以及這些音符之間的相互關系。

  比如大家都知道的do、re、mi、fa、so、la、si,這7個音符就組成了一組音律。

  研究音律的學問叫做“律學”。

  也就是研究為什么要選擇do、re、mi……這7個音(當然也可以選擇其它音)作為規范、這些被當成“標尺”的音是怎么產生的、以及它們之間到底是什么關系的學問。

對于任何民族來說,只要他們有著豐富的音樂體驗,只要他們想積累起關于音樂的知識,遲早都會遇到關于律學的問題。

  令人驚訝的是,古今不同民族,雖然各自鐘愛的音樂形式可謂萬紫千紅、百花爭艷,彼此也沒有互相借鑒,但大家的律學的基礎概念卻出奇地相似。

  這也許是音樂本身超文化、超地域的魅力所致吧。

(BTW:現代人學習的do、re、mi、fa、so、la、si,這些好像沒有意義的單詞,其實都是中世紀時西方教會中很流行的一些拉丁文圣詠(chant)的首音節。

  這些圣詠是西方現代音樂的源頭。

 ?。?/p>

學過高中物理的都知道,聲音的本質是空氣的振動。

  而空氣的振動是以波的形式傳播的,也就是所謂的聲波。

  所有的波(包括聲波、電磁波等等)都有三個最本質的特性:頻率/波長、振幅、相位。

  對于聲音來說,聲波的頻率(聲學中一般不考慮波長)決定了這個聲音有多“高”,聲波的振幅決定了這個聲音有多“響”,而人耳對于聲波的相位不敏感,所以研究音樂時一般不考慮聲波的相位問題。

律學當然不考慮聲音有多“響”,所以律學研究的重點就是聲波的頻率。

  一般來說,人耳能聽到的聲波頻率范圍是20HZ(每秒振動20次)到20000HZ(每秒振動20000次)之間。

  聲波的頻率越大(每秒振動的次數越多),聽起來就越“高”。

  頻率低于20HZ的叫“次聲波”,高于20000HZ的叫“超聲波”。

(BTW:人耳能分辨的最小頻率差是2HZ。

  舉例而言就是,人能聽出100HZ和102HZ的聲音是不同的,但聽不出100HZ和101HZ 的聲音有什么不同。

  另外,人耳在高音區的分辨能力迅速下降,原因見后。

 ?。?/p>

需要特別指出的是,人耳對于聲波的頻率是指數敏感的。

  打比方說,100HZ、200HZ、300HZ、400HZ……這些聲音,人聽起來并不覺得它們是“等距離”的,而是覺得越到后面,各個音之間的“距離”越近。

  100HZ、200HZ、400HZ、800HZ……這些聲音,人聽起來才覺得是“等距離”的(為什么會這樣我也不清楚)。

  換句話說,某一組聲音,如果它們的頻率是嚴格地按照×1、×2、×4、×8……,即按2n的規律排列的話,它們聽起來才是一個“等差音高序列”。

(比如這里有16個音,它們的頻率分別是110HZ的1倍、2倍、3倍……16倍。

  大家可以聽一下,感覺它們是不是音越高就“距離”越近。

  用音樂術語來說,這些音都是110HZ的“諧波”(harmonics),即這些聲波的頻率都是某一個頻率的整數倍。

  這個ogg文件可以用“暴風影音”/StormCodec軟件來試聽。

 ?。?/p>

由于人耳對于頻率的指數敏感,上面提到的“×2就意味著等距離”的關系是音樂中最基本的關系。

  用音樂術語來說,×2就是一個“八度音程”(octave)。

  前面提到的do、re、mi中的do,以及so、la、si后面的那個高音do,這兩個do之間就是八度音程的關系。

  也就是說,高音do的頻率是do的兩倍。

  同樣的,re和高音re之間也是八度音程的關系,高音re的頻率是re的兩倍。

  而高音do上面的那個更高音的do,其頻率就是do的4倍。

  也可以說,它們之間隔了兩個“八度音程”。

  顯然,一個音的所有“八度音程”都是它的“諧波”,但不是它的所有“諧波”都是自己的“八度音程”。

很自然,用do、re、mi寫的歌,如果換用高音do、高音re、高音mi來寫,聽眾只會覺得音變高了,旋律本身不會有變化。

  這種等效性,其實就是“等差音高序列”的直接結果。

“八度音程”的重要性,世界各地的人們都發現了。

  比如我國浙江的河姆渡遺址,曾經出土了一管距今9000年的笛子(是用鶴的腿骨做的),它能演奏8個音符,其中就包含了一個八度音程。

  當然這個八度音程不會是do到高音do,因為只要是一個音的頻率是另一個的兩倍,它們就是八度音程的關系,和具體某一個音有多高沒有關系。

明白了八度音程的重要性,下面來介紹在一個八度音程之內,還有那些音是重要的。

  這其實是律學的中心問題。

  也就是說,如果某一個音的頻率是F,那么我們要尋找F和2F之間還有那些重要的頻率。

如果大家有學習弦樂器(比如吉它、古琴、小提琴)的經驗的話,都明白它們能發聲是因為琴弦的振動。

  而琴弦的振動是和琴弦的長度有關系的。

  如果在一根弦振動的時候,用手指按住弦的中點,即讓原來全部振動的弦,變成兩根以1/2長度振動的弦,我們會聽到一個比較高的音。

  這個音和原來的音之間就是八度音程的關系。

  因為在物理上,弦的振動頻率和其長度是成反比的。

由于弦樂器是世界各地發展得最早的樂器種類之一,所以這種現象古人早已熟悉。

  他們自然會想:如果八度音程的2:1的關系在弦樂器上用這么簡單一按中點的方式就能實現,那么試試按其它的位置會怎么樣呢?

  數學上2:1是最簡單的比例關系了,簡單性僅次于它的就是3:1。

  那么,我們如果按住弦的1/3點,會怎么樣呢?

  其結果是弦發出了兩個高一些的音。

  一個音的頻率是原來的3倍(因為弦長變成了原來的1/3),另一個音是原來的3/2倍(因為弦長變成了原來的2/3)。

  這兩個音彼此也是八度音程的關系(因為它們彼此的弦長比是2:1)。

  這樣,在我們要尋找的F~2F的范圍內,出現了第一個重要的頻率,即3/2F。

 ?。莻€3F的頻率正好處于下一個八度,即2F~4F中的同樣位置。

 ?。?/p>

接著再試,數學上簡單性僅次于3:1的是4:1,我們試試按弦的1/4點會怎樣?

  又出現了兩個音。

  一個音的頻率是原來的4倍(因為弦長變成了原來的1/4),這和原來的音(術語叫“主音”)是兩個八度音程的關系,可以不去管它。

  另一個音的頻率是主音的4/3倍(因為弦長是原來的3/4)。

  現在我們又得到了一個重要的頻率,4/3F。

同一根弦,在不同的情況下振動,可以發出很多頻率的聲音。

  在聽覺上,與主音F最和諧的就是3/2F和4/3F(除了主音的各個八度之外)。

  這個現象也被很多民族分別發現了。

  比如最早從數學上研究弦的振動問題的古希臘哲學家畢達哥拉斯(Pythagoras,約公元前6世紀)。

  我國先秦時期的《管子·地員篇》、《呂氏春秋·音律篇》也記載了所謂“三分損益律”。

  具體說來是取一段弦,“三分損一”,即均分弦為三段,舍一留二,便得到3/2F。

  如果“三分益一”,即弦均分三段后再加一段,便得到4/3F。

得到這兩個頻率之后,是否繼續找1/5點、1/6點等等繼續試下去呢?

  不行,因為聽覺上這些音與主音的和諧程度遠不及3/2F、4/3F。

  實際上4/3F已經比3/2F的和諧程度要低不少了。

  古人于是換了一種方法。

  與主音F最和諧的3/2F已經找到了,他們轉而找3/2F的3/2F,即與最和諧的那個音最和諧的音,這樣就得到了(3/2)2F即9/4F。

  可是這已經超出了2F的范圍,進入了下一個八度。

  沒關系,不是有“等差音高序列”嗎?

  在下一個八度中的音,在這一個八度中當然有與它等價的一個音,于是把9/4F的頻率減半,便得到了9/8F。

接著把這個過程循環一遍,找3/2的3次方,于是就有了27/8F,這也在下一個八度中,再次頻率減半,得到了27/16F。

就這樣一直循環找下去嗎?

  不行,因為這樣循環下去會沒完沒了的。

  我們最理想的情況是某一次循環之后,會得到主音的某一個八度,這樣就算是“回到”了主音上,不用繼續找下去了。

  可是(3/2)n,只要n是自然數,其結果都不會是整數,更不用說是2的某次方。

  律學所有的麻煩就此開始。

數學上不可能的事,只能從數學上想辦法。

  古人的對策就是“取近似值”。

  他們注意到(3/2)5≈7.59,和23=8很接近,于是決定這個音就是他們要找的最后一個音,比這個音再高一點就是主音的第三個八度了。

  這樣,從主音F開始,我們只需把“按3/2比例尋找最和諧音”這個過程循環5次,得到了5個音,加上主音和4/3F,一共是7個音。

  這就是為什么音律上要取do、re、mi等等7個音符而不是6個音符或者8個音符的原因。

這7個音符的頻率,從小到大分別是F、9/8F、81/64F、4/3F、3/2F、27/16F、243/128F。

如果這里的F是do,那么9/8F就是re、81/64F就是mi……,這7個頻率組成了7聲音階。

  這7個音都有各自正式的名字,在西方音樂術語中,它們分別被叫做主音(tonic)、上主音(supertonic)、中音(mediant)、下屬音(subdominant)、屬音(dominant)、下中音(submediant)、導音(leading tone)。

  其中和主音關系最密切的是第5個“屬音”so和第4個“下屬音”fa,原因前面已經說過了,因為它們和主音的和諧程度分別是第一高和第二高的。

  由于這個音律主要是從“屬音”so即3/2F推導出來的,而3/2這個比例在西方音樂術語中叫“純五度”,所以這種音律叫做“五度相生律”。

  西方最早提出“五度相生律”的是古希臘的畢達哥拉斯(所以西方把按3/2比例定音律的做法叫做Pythagorean tuning),東方是《管子》一書的作者(不一定是管仲本人)。

  我國歷代的各種音律,大部分也都是從“三分損益律”發展出來的,也可以認為它們都是“五度相生律”。

仔細看上面“五度相生律”7聲音階的頻率,可以發現它們彼此的關系很簡單:do~re、re~mi、fa~so、so~la、la~si 之間的頻率比都是9:8,這個比例被稱為全音(tone);

  mi~fa、si~do 之間的頻率比都是256:243,這個比例被稱為半音(semitone)。

“五度相生律”產生的7聲音階,自誕生之日起就不斷被批評。

  原因之一就是它太復雜了。

  前面說過,如果按住弦的1/5點或者1/6點,得到的音已經和主音不怎么和諧了,現在居然出現了81/64和243/128這樣的比例,這不會太好聽吧?

  于是有人開始對這7個音的頻率做點調整,于是就出現了“純律”(just intonation)。

“純律”的重點是讓各個音盡量與主音和諧起來,也就是說讓各個音和主音的頻率比盡量簡單。

  “純律”的發明人是古希臘學者塔壬同(今意大利南部的塔蘭托城)的亞理斯托森努斯(Aristoxenus of Tarentum)。

 ?。|方似乎沒有人獨立提出“純律”的概念。

 ?。┐巳耸莵喞硎慷嗟碌膶W生,約生活在公元前3世紀。

  他的學說的重點就是要靠耳朵,而不是靠數學來主導音樂。

  他的書籍現在留下來的只有殘篇,不過可以證實的是他最先提出了所謂“自然音階”。

自然音階也有7個音,但和“五度相生律”的7聲音階有不小差別。

  7個自然音階的頻率分別是:F、9/8F、5/4F、4/3F、3/2F、5/3F、15/8F。

  確實簡單多了吧?

  也確實好聽多了。

  這么簡單的比例,就是“純律”。

可以看出“純律”不光用到了3/2的比例,還用到了5/4的比例。

  新的7個頻率中和原來不同的就是5/4F、5/3(=5/4×4/3)F、15/8(=5/4×3/2)F。

雖然“純律”的7聲音階比“五度相生律”的7聲音階要好聽,數學上也簡單,但它本身也有很大的問題。

  雖然各個音和主音的比例變簡單了,但各音之間的關系變復雜了。

  原來“五度相生律”7聲音階之間只有“全音”和“半音”2種比例關系,現在則出現了3種:9:8(被叫做“大全音”,major tone,就是原來的“全音”)、10:9(被叫做“小全音”,minor tone)、16:15(新的“半音”)。

  各位把自然音階的頻率互相除一下就能得到這個結果。

  更進一步說,如果比較自然音階中的re和fa,其頻率比是27/32,這也不怎么簡單,也不怎么好聽呢!

  所以說“純律”對“五度相生律”的修正是不徹底的。

  事實上,“純律”遠沒有“五度相生律”流行。

對于“五度相生律”的另一種修正是從另一個方向展開的。

  還記得為什么要取7個音符嗎?

  是因為(3/2)5≈7.59,和23=8很接近。

  可這畢竟是近似值,而不是完全相等。

  在一個八度之內,這么小的差距也許沒什么,但是如果樂器的音域跨越了好幾個八度,那么這種近似就顯得不怎么好了。

  于是人們開始尋找更好的近似值。

通過計算,古人發現(3/2)12≈129.7,和27=128很接近,于是他們把“五度相生律”中“按3/2比例尋找最和諧音”的循環過程重復12次,便認為已經到達了主音的第7個八度。

  再加上原來的主音和4/3F,現在就有了12個音符。

注意,現在的“規范”音階不是do、re、mi……等7個音符了,而是12個音符。

  這種經過修改的“五度相生律”推出的12聲音階,其頻率分別是:F、2187/2046F、9/8F、19683/16384F、81/64F、4/3F、729/512F、3/2F、6561/4096F、27/16F、59049/32768F、243/128F。

和前面的“五度相生律”的7聲音階對比一下,可以發現原來的7個音都還在,只是多了5個,分別插在它們之間。

  用正式的音樂術語稱呼原來的7個音符,分別是C、D、E、F、G、A、B。

  新多出來的5個音符于是被叫做C#(讀做“升C”)、D#、F#、G#、A#。

  12音階現在不能用do、re、mi的叫法了,應該被叫做:C、C#、D、D#、E、F、F#、G、G#、A、A#、B。

  把相鄰兩個音符的頻率互相除一下,就會發現它們之間的比例只有兩種:256:243(就是原來的“半音”,也叫做“自然半音”),2187:2048(這被叫做“變化半音”)。

也就是說,這12個音符幾乎可以說又構成了一個“等差音高序列”。

  它們之間的“距離”幾乎是相等的。

 ?。ó斎?,如果相鄰兩個音符之間的比例只有一種的話,就是嚴格的“距離”相等了。

 ?。┰瓉淼?聲音階中,C~D、D~E、F~G、G~A、A~B之間都相隔一個“全音”,現在則認為它們之間相隔了兩個“半音”。

  這也就是“全”、“半”這種叫法的根據。

既然C#被認為是從C“升”了半音得到的,那么C#也可以被認為是從D“降”了半音得到的,所以C#和Db(讀做“降D”)就被認為是等價的。

  事實上,5個新加入的音符也可以被寫做:Db、Eb、Gb、Ab、Bb。

這種12聲音階在音樂界的地位,我只用舉一個例子就能說明了。

  鋼琴上的所有白鍵對應的就是原來7聲音階中的C、D……B,所有的黑鍵對應的就是12聲音階中新加入的C#、Eb……Bb。

從7聲音階發展到12聲音階的做法,在西方和東方都出現得很早。

  《管子》中實際上已經提出了12聲音階,后來的中國音律也大多是以“五度相生律”的12聲音階為主。

  畢達哥拉斯學派也有提出這12聲音階的。

  不過西方要到中世紀晚期才重新發現它們。

能不能把“五度相生律”的12聲音階再往前發展一下呢?

  可以的。

  12聲音階的依據就是(3/2)^12≈129.7,和2^7=128很接近,按照這個思路,繼續找接近的值就可以了嘛。

還有人真地找到了,此人就是我國西漢的著名學者京房(77 BC-47 BC)。

  他發現(3/2)^53≈2.151×109,和2^31≈2.147×109也很接近,于是提出了一個53音階的新音律。

  要知道古人并沒有我們現在的計算器,計算這樣的高次冪問題對他們來說是相當麻煩的。

當然,京房的新律并沒有流行開,原因就是53個音階也太麻煩了吧!

  開始學音樂的時候要記住這么多音符,誰還會有興趣哦!

  但是這種努力是值得肯定的,也說明12聲音階也不完美,也確實需要改進。

“五度相生律”的12聲音階中的主要問題是,相鄰音符的頻率比例有兩種(自然半音和變化半音),而不是一種。

  而且兩種半音彼此差距還不小。

 ?。?187:2048)/(256:243)≈1.014。

  好像差不多哦?

  但其實自然半音本身就是256:243≈1.053了。

如果12聲音階是真正的“等差音高序列”的話,每個半音就應該是相等的,各個音階就應該是“等距離”的。

  也就是說,真正的12聲音階可以把一個八度“等分”成12份。

  為什么這么強調“等分”、“等距離”呢?

  因為在音樂的發展過程中,人們越來越覺得有“轉調”的必要了。

所謂轉調,其實就是用不同的音高來唱同一個旋律。

  比方說,如果某一個人的音域是C~高音C(也就是以前的do~高音do),樂器為了給他伴奏,得在C~高音C之內彈奏旋律;

  如果另一個人的音域是D~高音D(也就是以前的re~高音re),樂器得在D~高音D之內彈奏旋律。

  可是“五度相生律”的12聲音階根本不是“等差音高序列”,人們會覺得C~高音C之內的旋律和D~高音D之內的旋律不一樣。

  特別是如果旋律涉及到比較多的半音,這種不和諧就會很明顯。

  可以說,如果現在的鋼琴是按“五度相生律”來決定各鍵的音高,那么只要旋律中涉及到許多黑鍵,彈出來的效果就會一塌糊涂。

這種問題在弦樂器上比較好解決,因為弦樂器的音高是靠手指的按壓來決定的。

  演奏者可以根據不同的音域、旋律的要求,有意地不在規定的指位上按弦,而是偏移一點按弦,就能解決問題。

  可是鍵盤樂器(比如鋼琴、管風琴、羽管鍵琴等)的音高是固定的,無法臨時調整。

  所以在西方中世紀的音樂理論里,就規定了有些調、有些音是不能用的,有些旋律是不能寫的。

  而有些教堂的管風琴,為了應付可能出現的各種情況,就預先準備下許多額外的發音管。

  以至于有的管風琴的發音管有幾百甚至上萬根之多。

  這種音律規則上的缺陷,導致一方面作曲家覺得受到了限制,一方面演奏家也覺得演奏起來太麻煩。

問題的根源還是出在近似值上。

  “五度相生律”所依據的(3/2)^12畢竟和2^7并不完全相等。

  之所以會出現兩種半音,就是這個近似值造成的。

對“五度相生律”12聲音階的進一步修改,東、西方也大致遵循了相似的路線。

  比如東晉的何承天(370 AD-447 AD),他的做法是把(3/2)^12和2^7之間的差距分成12份,累加地分散到12個音階上,造成一個等差數列。

  可惜這只是一種修補工作,并沒有從根本上解決問題。

  西方的做法也是把(3/2)^12和2^7之間的差距分散到其它音符上。

  但是為了保證主音C和屬音G的3/2的比例關系(這個“純五度”是一個音階中最重要的和諧,即使是在12聲音階中也是如此),這種分散注定不是平均的,最好的結果也是12音中至少有一個“不在調上”。

  如果把差距全部分散到12個音階上的話,就必須破壞C和G之間的“純五度”,以及C和F之間的4/3比例(術語是“純四度”)。

  這樣一來,雖然方便了轉調,但代價就是音階再也沒有以前好聽了。

  因為一個八度之內最和諧的兩個關系――純五度和純四度――都被破壞了。

一直到文藝復興之前,西方音樂界通行的律法叫“平均音調律”(Meantone temperament),就是在保證純五度和純四度盡量不受影響的前提下,把(3/2)^12和2^7之間的差距盡量分配到12個音上去。

  這種折衷只是一種無可奈何的妥協,大家其實都在等待新的音律出現。

終于還是有人想到了徹底的解決辦法。

  不就是在一個八度內均分12份嗎?

  直接就把2:1這個比例關系開12次方不就行了?

  也就是說,真正的半音比例應該是2^1/12。

  如果12音階中第一個音的頻率是F,那么第二個音的頻率就是2^1/12F,第三個音就是2^2/12F,第四個音是2^3/12F,……,第十二個是2^11/12F,第十三個就是2^12/12F,就是2F,正好是F的八度。

這是“轉調”問題的完全解決。

  有了這個新的音律,從任何一個音彈出的旋律可以復制到任何一個其它的音高上,而對旋律不產生影響。

  西方巴洛克音樂中,復調音樂對于多重聲部的偏愛,有了這個新音律之后,可以說不再有任何障礙了。

  后來的古典主義音樂,也間接地受益匪淺。

  可以說沒有這個新的音律的話,后來古典主義者、浪漫主義者對于各種音樂調性的探索都是不可能的。

這種新的音律就叫“十二平均律”。

  首先發明它的是一位中國人,叫朱載堉(yù)。

  他是明朝的一位皇室后代,生于1536年,逝世于1611年。

  他用珠算開方的辦法(珠算開12次方,難度可想而知),首次計算出了十二平均律的正確半音比例,其成就見于所著的《律學新書》一書。

  很可惜,他的發明,和中國古代其它一些偉大的發明一樣,被淹沒在歷史的塵埃之中了,很少被后人所知。

西方人提出“十二平均律”,大約比朱載堉晚50年左右。

  不過很快就傳播、流行開來了。

  主要原因是當時西方音樂界對于解決轉調問題的迫切要求。

  當然,反對“十二平均律”的聲音也不少。

  主要的反對依據就是“十二平均律”破壞了純五度和純四度。

  不過這種破壞程度并不十分明顯。

“十二平均律”的12聲音階的頻率(近似值)分別是:F(C)、1.059F(C#/Db)、1.122F(D)、1.189F(D#/Eb)、1.260F(E)、1.335F(F)、1.414F(F#/Gb)、1.498F(G)、1.587F(G#/Ab)、1.682F(A)、1.782F(A#/Bb)、1.888F(B)。

注意,現在所有的半音都一樣了,都是2^1/12,即1.059。

  以前的自然半音和變化半音的區別沒有了。

另外,原來“五度相生律”的12音階中,C和G的比例是3/2(即純五度),現在“十二平均律”的12音階中,C和G的比例是1.498,和純五度所要求的3/2(1.5)非常接近。

  原來“五度相生律”的12音階中,C和F的比例是4/3(即純四度),現在“十二平均律”的12音階中,C和F的比例是1.335,和純四度所要求的4/3(1.333)也非常接近。

  所以“十二平均律”基本上保留了“五度相生律”最重要的特性。

  又加上它完美地解決了轉調問題,所以后來“十二平均律”基本上取代了“五度相生律”的統治地位。

  現在的鋼琴就是按“十二平均律”來確定各鍵音高的。

  現在學生們學習的do、re、mi也是按“十二平均律”修改過的7聲音階。

  現在如果想聽“五度相生律”或者“純律”的do、re、mi,已經很不容易了。

BTW:現在鋼琴的音高標準是按“中央C”(即通常的do)右邊的第五個白鍵(按術語說是A4)的頻率來定的。

  這個A鍵的頻率被確定為440HZ。

  確定了它,鋼琴上其它鍵的頻率都可以按“十二平均律”類推得到。

  不過在某些國家(比如東歐),也有把這個鍵的頻率定為444HZ的。

  歷史上,這個A鍵的標準曾經有過很多次變化。

  比如在1759年,英國劍橋的“三一學院”(Trinity College Campidge)的管風琴的這個A鍵,就曾經被定在309HZ。

  可以想像在這里聽到的旋律和我們現在聽到的旋律該有怎樣大的差別。

  研究古代音樂家的作品的時候,對于當時音高標準的研究也是很重要的一部分。

關于“十二平均律”,最后要提的是所謂“大調”、“小調”的問題。

  自從“五度相生律”提出12音階以來,12音階和原來的7音階之間的關系一直就被人們所研究。

  也就是說,在原來的7音階之外,現在人們可以在12音階中選取其它的7個音來作為音樂的“標尺”了。

  這可以給作曲家們以更大的創作自由。

以C~高音C的八度為例,如果我們選擇原來的7音階,即C、D、E、F、G、A、B,這就被稱為“大調”(major scale),又因為這個大調的主音是C,所以被稱為“C大調”。

  而如果我們選擇C、D、D#(Eb)、F、G、G#(Ab)、A#(Bb),這就被稱為“c小調”(C minor scale)。

  用小寫c的原因是表示這是小調。

大調和小調的區別就在于,大調和小調里各音之間的“距離感”不同,以它們為基礎來作曲,給聽眾的感覺也不相同。

  這就讓作曲家有了用音樂表現不同情緒的機會。

西方中世紀的音樂理論里,曾經提出了8種不同的方法在12音中選7個音作為基準,其中就包含了我們現在談的大調和小調。

  當時的音樂理論給予這8種調性(mode)以不同的感情色彩,比如有的被認為是“悲傷的”,有的被認為是“快樂的”,有的被認為是“朝氣蓬勃的”等等。

  這8種調性中有一些現在已經很少用了,現在最流行的是大調和小調這兩種。

由于“十二平均律”允許隨意轉調,這就讓作曲家可以更為地自由創作。

  以前由于各音之間的半音“不等距”的問題,有些調被認為不能寫作的,現在也可以毫無阻礙的進行創作了。

****************************************************************

調式是按照一定關系(高低關系、穩定與不穩定關系等)組織起來的一組音(一般在七個音之內),并以某一個音為中心音(即主音)聯結成一個體系,這個體系就叫調式。

大調音階由七個基本音級組成。

  根據大調構成法則,第三、四級(mi和fa)之間、第七八級(si和do)之音的距離都是半音(即小二度)。

  而其他相鄰兩級之間的距離都是全音(即大二度)的音階稱為大調音階。

  如C大調(自然大調)的七個基本音級為C、D、E、F、G、A、B;

  G大調的七個基本音級為G、A、B、C、D、E、#F,等等。

小調也是由一種七個音構成的調式,根據各音級相鄰音的音高關系不同又可分為自然小調、和聲小調和旋律小調,小調的特征表現在主音上方的小三度,它最能說明小調的色彩和性格。

  如a自然小調的七個音級為a、b、c、d、e、f、g;

  a和聲小調為 a、b、c、d、e、f、#g等等,如非指明,我們一般稱自然小調為“小調”。

大調的音階結構是“全全半全全全半”,比如C大調12345671或者G大調567123#45。

  小調的音階結構是“全半全全半全全”,比如a小調67123456或者g小調56 b7 12 b3 45

調式的色彩不同,表現為不同的表情特征,而這種表情特征也是相對的,并不固定為某種調式只適于表現某種思想情緒,但一般來說,大調色彩明亮,小調則較為柔和暗淡。

區分大小調,要看該曲的主音是什么音,一般主要從樂曲的終止音上就可以看得出來,大調一般終止于主音1(do)上,小調則一般終止于主音6(la)上。

《中文版尺八調律秘法》,《簫的內徑調節》。

  關于“音樂中的1234567是如何來的?”的介紹到此結束。

責任編輯:褚興英

上一篇:易筋經十二式和經筋的關系

下一篇:沒有了

最近新免费韩国电影国语_国色天香社区在线观看最新_有人有片在线观看的资源_国产精品酒店在线精品酒店